Copied to
clipboard

G = C42.5C23order 128 = 27

5th non-split extension by C42 of C23 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.5C23, C4⋊Q83C22, (C2×D4).30D4, C8.2D41C2, (C2×Q8).30D4, C8⋊C428C22, C24⋊C22.C2, C2.27(D44D4), C4.4D4.9C22, C2.20(D4.9D4), C22.186C22≀C2, C42.C223C2, C42.28C2226C2, (C2×C4).218(C2×D4), SmallGroup(128,391)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C42.5C23
C1C2C22C2×C4C42C4.4D4C24⋊C22 — C42.5C23
C1C22C42 — C42.5C23
C1C22C42 — C42.5C23
C1C22C22C42 — C42.5C23

Generators and relations for C42.5C23
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=a2, ab=ba, cac-1=dad=a-1, eae=a-1b2, cbc-1=ebe=b-1, dbd=a2b-1, dcd=ac, ece=bc, de=ed >

Subgroups: 336 in 114 conjugacy classes, 30 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, SD16, Q16, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C24, C8⋊C4, C8⋊C4, D4⋊C4, Q8⋊C4, C22≀C2, C4.4D4, C4.4D4, C4.4D4, C4⋊Q8, C2×SD16, C2×Q16, C42.C22, C42.C22, C42.28C22, C8.2D4, C24⋊C22, C42.5C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, D44D4, D4.9D4, C42.5C23

Character table of C42.5C23

 class 12A2B2C2D2E2F4A4B4C4D4E4F4G8A8B8C8D8E8F
 size 111188844488816888888
ρ111111111111111111111    trivial
ρ21111111111111-1-1-1-1-1-1-1    linear of order 2
ρ31111-11-1111-11-111-1-1-11-1    linear of order 2
ρ41111-11-1111-11-1-1-1111-11    linear of order 2
ρ51111-1-11111-1-11-11-1111-1    linear of order 2
ρ61111-1-11111-1-111-11-1-1-11    linear of order 2
ρ711111-1-11111-1-1-111-1-111    linear of order 2
ρ811111-1-11111-1-11-1-111-1-1    linear of order 2
ρ92222200-22-2-2000000000    orthogonal lifted from D4
ρ1022220022-2-200-20000000    orthogonal lifted from D4
ρ1122220-20-2-220200000000    orthogonal lifted from D4
ρ12222200-22-2-20020000000    orthogonal lifted from D4
ρ132222-200-22-22000000000    orthogonal lifted from D4
ρ142222020-2-220-200000000    orthogonal lifted from D4
ρ154-4-4400000000002000-20    orthogonal lifted from D44D4
ρ164-4-440000000000-200020    orthogonal lifted from D44D4
ρ174-44-4000000000002i000-2i    complex lifted from D4.9D4
ρ184-44-400000000000-2i0002i    complex lifted from D4.9D4
ρ1944-4-40000000000002i-2i00    complex lifted from D4.9D4
ρ2044-4-4000000000000-2i2i00    complex lifted from D4.9D4

Smallest permutation representation of C42.5C23
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 19 13 7)(2 20 14 8)(3 17 15 5)(4 18 16 6)(9 28 21 30)(10 25 22 31)(11 26 23 32)(12 27 24 29)
(1 27 3 25)(2 26 4 28)(5 22 7 24)(6 21 8 23)(9 20 11 18)(10 19 12 17)(13 29 15 31)(14 32 16 30)
(1 15)(2 14)(3 13)(4 16)(6 8)(9 10)(11 12)(18 20)(21 22)(23 24)(25 32)(26 31)(27 30)(28 29)
(2 16)(4 14)(5 17)(6 8)(7 19)(9 32)(10 25)(11 30)(12 27)(18 20)(21 26)(22 31)(23 28)(24 29)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,13,7)(2,20,14,8)(3,17,15,5)(4,18,16,6)(9,28,21,30)(10,25,22,31)(11,26,23,32)(12,27,24,29), (1,27,3,25)(2,26,4,28)(5,22,7,24)(6,21,8,23)(9,20,11,18)(10,19,12,17)(13,29,15,31)(14,32,16,30), (1,15)(2,14)(3,13)(4,16)(6,8)(9,10)(11,12)(18,20)(21,22)(23,24)(25,32)(26,31)(27,30)(28,29), (2,16)(4,14)(5,17)(6,8)(7,19)(9,32)(10,25)(11,30)(12,27)(18,20)(21,26)(22,31)(23,28)(24,29)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,13,7)(2,20,14,8)(3,17,15,5)(4,18,16,6)(9,28,21,30)(10,25,22,31)(11,26,23,32)(12,27,24,29), (1,27,3,25)(2,26,4,28)(5,22,7,24)(6,21,8,23)(9,20,11,18)(10,19,12,17)(13,29,15,31)(14,32,16,30), (1,15)(2,14)(3,13)(4,16)(6,8)(9,10)(11,12)(18,20)(21,22)(23,24)(25,32)(26,31)(27,30)(28,29), (2,16)(4,14)(5,17)(6,8)(7,19)(9,32)(10,25)(11,30)(12,27)(18,20)(21,26)(22,31)(23,28)(24,29) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,19,13,7),(2,20,14,8),(3,17,15,5),(4,18,16,6),(9,28,21,30),(10,25,22,31),(11,26,23,32),(12,27,24,29)], [(1,27,3,25),(2,26,4,28),(5,22,7,24),(6,21,8,23),(9,20,11,18),(10,19,12,17),(13,29,15,31),(14,32,16,30)], [(1,15),(2,14),(3,13),(4,16),(6,8),(9,10),(11,12),(18,20),(21,22),(23,24),(25,32),(26,31),(27,30),(28,29)], [(2,16),(4,14),(5,17),(6,8),(7,19),(9,32),(10,25),(11,30),(12,27),(18,20),(21,26),(22,31),(23,28),(24,29)]])

Matrix representation of C42.5C23 in GL8(𝔽17)

00100000
00010000
10000000
01000000
00000010
00000001
000016000
000001600
,
01000000
160000000
00010000
001600000
00000100
000016000
00000001
000000160
,
89880000
99890000
88890000
89990000
0000152215
0000221515
0000215215
000015151515
,
160000000
01000000
001600000
00010000
00001000
00000100
000000160
000000016
,
10000000
016000000
001600000
00010000
00001000
000001600
00000010
000000016

G:=sub<GL(8,GF(17))| [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0],[8,9,8,8,0,0,0,0,9,9,8,9,0,0,0,0,8,8,8,9,0,0,0,0,8,9,9,9,0,0,0,0,0,0,0,0,15,2,2,15,0,0,0,0,2,2,15,15,0,0,0,0,2,15,2,15,0,0,0,0,15,15,15,15],[16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16] >;

C42.5C23 in GAP, Magma, Sage, TeX

C_4^2._5C_2^3
% in TeX

G:=Group("C4^2.5C2^3");
// GroupNames label

G:=SmallGroup(128,391);
// by ID

G=gap.SmallGroup(128,391);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,422,1123,570,521,136,3924,1411,998,242]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=a^2,a*b=b*a,c*a*c^-1=d*a*d=a^-1,e*a*e=a^-1*b^2,c*b*c^-1=e*b*e=b^-1,d*b*d=a^2*b^-1,d*c*d=a*c,e*c*e=b*c,d*e=e*d>;
// generators/relations

Export

Character table of C42.5C23 in TeX

׿
×
𝔽